Ionov, D.A., Doucet, L.S., Pogge von Strandmann, P.A.E., Golovin, A.V., Korsakov, A.V., Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton, 2017, Chemical Geology, 475: 105–121.
We report the concentrations ([Li]) and isotopic compositions of Li in mineral separates and bulk rocks obtained by MC-ICPMS for 14 previously studied garnet and spinel peridotite xenoliths from the Udachnaya kimberlite in the central Siberian craton as well as major and trace element compositions for a new suite of 13 deformed garnet peridotites. The deformed Udachnaya peridotites occur at > 5 GPa; they are metasomatized residues of melt extraction, which as a group experienced greater modal and chemical enrichments than coarse peridotites. We identify two sub-groups of the deformed peridotites: (a) mainly cryptically metasomatized (similar to coarse peridotites) with relatively low modal cpx (< 6%) and garnet (< 7%), low Ca and high Mg#, sinusoidal REE patterns in garnet, and chemically unequilibrated garnet and cpx; (b) modally metasomatized with more cpx and garnet, higher Ca, Fe and Ti, and equilibrated garnet and cpx. The chemical enrichments are not proportional to deformation degrees. The deformation in the lower lithosphere is caused by a combination of localized stress, heating and fluid ingress from the pathways of ascending proto-kimberlite melts, with metasomatic media evolving due to reactions with wall rocks. Mg-rich olivine in spinel and coarse garnet Udachnaya peridotites has 1.2–1.9 ppm Li and δ7Li of 1.2–5.0‰, i.e. close to olivine in equilibrated fertile to depleted off-craton mantle peridotites from literature data, whereas olivine from the deformed peridotites has higher [Li] (2.4–7.5 ppm) and a broader range of δ7Li (1.8–11.6‰), which we attribute to pre-eruption metasomatism. [Li] in opx is higher than in coexisting olivine while Δ7LiOl-Opx (δ7LiOl − δ7LiOpx) ranges from −6.6 to 7.8‰, indicating dis- equilibrium inter-mineral [Li] and Li-isotope partitioning. We relate these Li systematics to interaction of li- thospheric peridotites with fluids or melts that are either precursors of kimberlite magmatism or products of their fractionation and/or reaction with host mantle. The melts rich in Na and carbonates infiltrated, heated and weakened wall-rock peridotites to facilitate their deformation as well as produce high [Li] and variable, but mainly high, δ7Li in olivine. The carbonate-rich melts preferentially reacted with the opx without achieving inter-mineral equilibrium because opx is consumed by such melts, and because of small volumes and uneven distribution of the metasomatic media, as well as short time spans between the melt infiltration and the capture of the wall-rock fragments by incoming portions of ascending kimberlite magma as xenoliths. Trapped inter- stitial liquid solidified as cryptic components responsible for high [Li] and the lack of δ7Li balance between olivine and opx, and bulk rocks. Unaltered δ26Mg values (0.20–0.26‰) measured in several olivine separates show no effects of the metasomatism on Mg-isotopes, apparently due to high Mg in the peridotites.
Link to full article
Hin, R.C., Coath, C.D., Carter, P.J., Nimmo, F., Lai, Y-J., Pogge von Strandmann, P.A.E., Willbold, M., Leinhardt, Z.M., Walter, M.J., Elliott, T., Magnesium isotope evidence that accretional vapour loss shapes planetary compositions, 2017, Nature, 549: 511–515.
It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion1 or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism.
Perez-Fernandez, A., Berninger, U.-N., Mavromatis, V., Pogge von Strandmann, P.A.E., Oelkers, E.H., Ca and Mg isotope fractionation during the stoichiometric dissolution of dolomite at temperatures from 51 to 126° C and 5 bars CO2 pressure, 2017, Chemical Geology, 467: 76–88.
Natural polycrystalline hydrothermal Sainte Colombe dolomite was dissolved in stirred titanium closed system reactors in aqueous 0.1 mol/kg NaCl solutions at 51, 75, 121, and 126 °C and a pressure of 5 bars CO2. In total, 52, 27, 16, and 12%, respectively, of the dolomite placed in the reactors dissolved into the fluid phase during these experiments. Each experiment lasted from 12 to 47 days and the fluid phase in each evolved towards, but did not exceed, ordered dolomite equilibrium at a pH of 5.9 ± 0.3. All aqueous reactive fluids were under- saturated with respect to all potential secondary phases including calcite and magnesite. The reactive fluid compositions at the end of the experiments had a molar Ca/Mg ratio equal to that of the dissolving dolomite, and the dolomite recovered after the experiments contained only pure dolomite as verified by scanning electron microscopy. The Ca and Mg isotopic ratios of the reactive fluids remained within uncertainty equal to that of the dissolving dolomite in the experiments performed at 51 and 75 °C. In contrast, the Ca isotopic composition of the reactive fluid in the experiment performed at 121 and 126 °C was significantly greater such that Δ44/42Casolid- fluid = −0.6 ± 0.1‰, whereas that of Mg was within uncertainty equal to that of the dissolving mineral. The equilibrium fractionation factors for both divalent cations favor the incorporation of isotopically light metals into the dolomite structure. Our results at 121 and 126 °C, therefore, are consistent with the one-way transfer of Mg from dolomite to the fluid but the two-way transfer of Ca from and to dolomite as equilibrium is approached during its stoichiometric dissolution. The lack of Mg returning to the dolomite structure at these conditions is attributed to the slow dehydration kinetics of aqueous Mg. As more than 12% of the dolomite dissolved during the 121 and 126 °C closed system experiments, our observations indicate a significant change in the Ca isotopic signature of the dolomite during its stoichiometric dissolution. Moreover, as there is no visual evidence for dolomite recrystallization during this experiment, it seems likely that the resetting of Ca isotopic signatures of carbonate minerals can be readily overlooked in the interpretation of natural systems.
Pogge von Strandmann, P.A.E., Desrochers, A., Murphy, M.J., Finaly, A.J., Selby, D., Lenton, T.M., Global climate stabilisation by chemical weathering during the Hirnantian glaciation, 2017, Geochemical Perspectives Letters, 3: 230–237.
Hawley, S.M., Pogge von Strandmann, P.A.E., Burton, K.W., Williams, H.M., Gislason, S.R., Continental weathering and terrestrial (oxyhydr)oxide export: Comparing glacial and non-glacial catchments in Iceland, 2017, Chemical Geology, 462: 55–66.
Glaciers enhance terrestrial erosion and sediment export to the ocean. Glaciers can also impact mineral specific weathering rates relative to analogous non-glacial terrains. In tandem these processes affect continent sediment export to the oceans over glacial-interglacial cycles. This study summarizes field data from glacial and non-glacial Icelandic river catchments to quantify the impact of weathering regime on iron and aluminium (oxyhydr)oxide mineral formation and flux rates. Aluminium and iron (oxyhydr)oxides are strong indicators of organic carbon preservation in soils and marine sediments. Tracing changes in (oxyhydr)oxide formation and deposition therefore provides a means of evaluating potential changes in organic carbon sequestration rates over glacial-interglacial cycles. Overall, there are several measurable chemical differences between the studied glacial and non-glacial catchments which reflect the key role of soil formation on terrestrial weathering. One of the noted chemical differences is that weathering in non-glacial catchments is characterized by higher apparent rates of iron and aluminium (oxyhydr)oxide formation relative to glacial catchments. However, the offset in (oxyhydr)oxide formation does not appear to be transferred into river sediment compositions, and physical weathering appears to be the dominant control of river sediment composition and export. Glacial rivers export far more total sediment to nearshore marine environments than analogous non-glacial rivers suggesting glacial weathering enhances carbon burial by increasing nearshore marine (oxyhydr)oxide accumulation.
Pogge von Strandmann, P.A.E., Vaks, A., Bar-Matthews, M., Ayalon, A., Jacob, E., Henderson G.M., Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles, 2017, Earth and Planetary Science Letters, 469: 64–74.
Terrestrial chemical weathering of silicate minerals is a fundamental component of the global cycle of carbon and other elements. Past changes in temperature, rainfall, ice cover, sea-level and physical erosion are thought to affect weathering but the relative impact of these controls through time remains poorly constrained. This problem could be addressed if the nature of past weathering could be constrained at individual sites. In this study, we investigate the use of speleothems as local recorders of the silicate weathering proxy, Li isotopes. We analysed δ7Li and [Li] in speleothems that formed during the past 200 ka in two well-studied Israeli caves (Soreq and Tzavoa), as well as in the overlying soils and rocks. Leaching and mass balance of these soils and rocks show that Li is dominantly sourced from weathering of the overlying aeolian silicate soils. Speleothem δ7Li values are ubiquitously higher during glacials (∼23‰) than during interglacials (∼10‰), implying more congruent silicate weathering during interglacials (where “congruent” means a high ratio of primary mineral dissolution to secondary mineral formation). These records provide information on the processes controlling weathering in Israel. Consideration of possible processes causing this change of weathering congruency indicates a primary role for temperature, with higher temperatures causing more congruent weathering (lower δ7Lispeleo). The strong relationship observed between speleothem δ7Li and climate at these locations suggests that Li isotopes may be a powerful tool with which to understand the local controls on weathering at other sites, and could be used to assess the distribution of weathering changes accompanying climate change, such as that of Pleistocene glacial cycles.
Marschall, H.R., Wanless, V.D., Shimizu, N., Pogge von Strandmann, P.A.E., Elliott, T., Monteleone, B.D., The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle, 2017, Geochimica et Cosmochimica Acta, 207: 102–138.
A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([Li]=1.39±0.10 μg/g and [B]=0.19±0.02 μg/g) and depleted mantle abundances ([Li]=1.20±0.10 μg/g and [B]=0.077±0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl/K, causes significant elevation of MORB δ11B and variable elevation in δ7Li. The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than −6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low-Cl/K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11B=-7.1±0.9‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7Li=+3.5±1.0‰ (mean of five ridge segments; 2SD), excluding high-Cl/K samples. A significant variation of 1.0–1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this variation is unrelated to differentiation, assimilation or mantle source indicators, such as radiogenic isotopes or trace elements. It, therefore, seems likely that kinetic fractionation of Li isotopes during magma extraction, transport and storage may generate δ7Li excursions in MORB. No mantle heterogeneities, such as those generated by deeply recycled subducted materials, are invoked in the interpretation of the Li and B isotope data presented here, in contrast to previous work on smaller data sets. Lithium and boron budgets for the silicate Earth are presented that are based on isotope and element mass balance. A refined estimate for the B isotopic composition of the bulk continental crust is given as δ11B=-9.1±2.4‰. Mass balance allows the existence of recycled B reservoirs in the deep mantle, but these are not required. However, mass balance among the crust, sediments and seawater shows enrichment of 6Li in the surface reservoirs, which requires the existence of 7Li-enriched material in the mantle. This may have formed by the subduction of altered oceanic crust since the Archaean.
Chapela Lara, M., Buss, H.L., Pogge von Strandmann, P.A.E., Schuessler, J.A., Moore, O.W., The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered andesitic catchment, 2017, Geochimica et Cosmochimica Acta, 202: 77–100.
In order to assess the effects of critical zone processes on Mg concentrations and isotopic signatures of tropical streams, we studied a well constrained, highly weathered andesitic volcaniclastic catchment in the Luquillo Critical Zone Observatory, Puerto Rico. Our results indicate that dissolved Mg concentrations and isotope ratios in the regolith pore water are mainly controlled by rain input, with weathering inputs being more important at sites with thinner regolith (2.7–0.9 m deep) and at depth (>8 m) on a thick ridgetop regolith (∼10 m). In addition to mixing of precipitation and weathering-sourced Mg, an isotopic fractionation process is taking place between dissolved Mg and the regolith, likely during dissolution or recrystallisation of Fe(III)-(hydro)oxides under alternating redox conditions. Bulk regolith is isotopically heavier than both the bedrock and the exchangeable fraction (δ26Mgregolith-bedrock = +0.03 to +0.47‰), consistent with the preferential incorporation of heavy 26Mg into secondary minerals with some exchange of sorbed Mg with isotopically lighter pore water. Magnesium concentrations in the stream show a typical dilution behaviour during a storm event, but the [Mg] – δ26Mg pattern cannot be explained by mixing of rain and pore water; the data are best explained by a steady-state fractionation model with α = 1.00115. During baseflow the stream has δ26Mg = +0.01‰, higher than any of the water samples or the bedrock. In-situ analysis of the Mg isotopic composition of bedrock minerals points at the dissolution of Mg-rich chlorite (δ26Mg = +0.19‰) as the most likely source of this isotopically heavy Mg, with mass balance calculations indicating chlorite dissolution is also the main source of Mg to the stream. Overall, our study highlights the importance of atmospheric input of nutrients to the vegetation in tropical areas covered by thick, highly leached regolith, whereas the Mg flux and Mg isotopic signature of watershed exports are dominated by bedrock dissolution delivered to the stream through deeper, usually un-sampled critical zone pathways.
Ullmann, C.V., Pogge von Strandmann, P.A.E., The effect of shell secretion rate on Mg/Ca and Sr/Ca ratios in biogenic calcite as observed in a belemnite rostrum, 2017, Biogeosciences, 14: 89–97.
Isotopic ratios and concentrations of the alkaline earth metals Mg and Sr in biogenic calcite are of great importance as proxies for environmental parameters. In particular, the Mg / Ca ratio as a temperature proxy has had considerable success. It is often hard to determine, however, which parameter ultimately controls the concentration of these elements in calcite. Here, multiple Mg / Ca and Sr / Ca transects through a belemnite rostrum of Passaloteuthis bisulcata (Blainville, 1827) are used to isolate the effect of calcite secretion rate on incorporation of Mg and Sr into the calcite. With increasing calcite secretion rate Mg / Ca ratios decrease and Sr / Ca ratios in the rostrum increase. In the studied specimen this effect is found to be linear for both element ratios over a calcite secretion rate increase of ca. 150 %. Mg / Ca ratios and Sr / Ca ratios show a linear co-variation with increasing relative growth rate, where a 100 % increase in growth rate leads to a (8.1 ± 0.9) % depletion in Mg and a (5.9 ± 0.7) % enrichment in Sr. The magnitude of the calcite secretion rate effect on Mg is (37 ± 4) % greater than that on Sr. These findings are qualitatively confirmed by a geochemical transect through a second rostrum of Passaloteuthis sp. Growth rate effects are well defined in rostra of Passaloteuthis, but only account for a minor part of chemical heterogeneity. Biasing effects on palaeoenvironmental studies can be minimized by informed sampling, whereby the apex and apical line of the rostrum are avoided.
Wanner, C., Bucher, K., Pogge von Strandmann, P.A.E., Waber, H.N., Pettke, T., On the use of Li isotopes as a proxy for water–rock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel, 2017,Geochimica et Cosmochimica Acta, 198: 396–418.
We present Li isotope measurements of groundwater samples collected during drilling of the 57 km long Gotthard rail base tunnel in Switzerland, to explore the use of Li isotope measurements for tracking water–rock interactions in fractured crystalline rocks at temperatures of up to 43 °C. The 17 groundwater samples originate from water-conducting fractures within two specific crystalline rock units, which are characterized by a similar rock mineralogy, but significantly different fluid composition. In particular, the aqueous Li concentrations observed in samples from the two units vary from 1–4 mg/L to 0.01–0.02 mg/L. Whereas δ7Li values from the unit with high Li concentrations are basically constant (δ7Li = 8.5–9.1‰), prominent variations are recorded for the samples from the unit with low Li concentrations (δ7Li = 10–41‰). This observation demonstrates that Li isotope fractionation can be highly sensitive to aqueous Li concentrations. Moreover, δ7Li values from the unit with low Li concentrations correlate well with reaction progress parameters such as pH and [Li]/[Na] ratios, suggesting that δ7Li values are mainly controlled by the residence time of the fracture groundwater. Consequently, 1D reactive transport modeling was performed to simulate mineral reactions and associated Li isotope fractionation along a water-conducting fracture system using the code TOUGHREACT. Modeling results confirm the residence time hypothesis and demonstrate that the absence of δ7Li variation at high Li concentrations can be well explained by limitation of the amount of Li that is incorporated into secondary minerals. Modeling results also suggest that Li uptake by kaolinite forms the key process to cause Li isotope fractionation in the investigated alkaline system (pH >9), and that under slow flow conditions (<10 m/year), this process is associated with a very large Li isotope fractionation factor (ε ≈ −50‰). Moreover, our simulations demonstrate that for simple and well-defined systems with known residence times and low Li concentrations, δ7Li values may help to quantify mineral reaction rates if more thermodynamic data about the temperature-dependent incorporation of Li in secondary minerals as well as corresponding fractionation factors become available in the future. In conclusion, δ7Li values may be a powerful tool to track water–rock interaction in fractured crystalline rocks at temperature higher than those at the Earth’s surface, although their use is restricted to low Li concentrations and well defined flow systems.
Pogge von Strandmann, P.A.E., Frings, P.J., Murphy, M.J., Lithium isotope behaviour during weathering in the Ganges Alluvial Plain, 2017,Geochimica et Cosmochimica Acta, 198: 17–31.
The Ganges river system is responsible for the transportation of a large flux of dissolved materials derived from Himalayan weathering to the oceans. Silicate weathering-driven cooling resulting from uplift of the Himalayas has been proposed to be a key player in Cenozoic climate variation. This study has analysed Li isotope (δ7Li) ratios from over 50 Ganges river waters and sediments, in order to trace silicate weathering processes. Sediments have δ7Li of ∼0‰, identical to bulk continental crust, however suspended sediment depth profiles do not display variations associated with grain size that have been observed in other large river systems. Dissolved δ7Li are low (∼11‰) in the Ganges headwaters, but reach a constant value of 21 ± 1.6‰ within a relatively short distance downstream, which is then maintained for almost 2000 km to the Ganges mouth. Given that Li isotopes are controlled by the ratio of primary mineral dissolution to secondary mineral formation, this suggests that the Ganges floodplain is at steady-state in terms of these processes for most of its length. Low δ7Li in the mountainous regions suggest silicate weathering is therefore at its most congruent where uplift and fresh silicate exposure rates are high. However, there is no correlation between δ7Li and the silicate weathering rate in these rivers, suggesting that Li isotopes cannot be used as a weathering-rate tracer, although they do inform on weathering congruency and intensity. The close-to-constant δ7Li values for the final 2000 km of Ganges flow also suggest that once the size of the alluvial plain reached more than ∼500 km (the flow distance after which riverine δ7Li stops varying), the Ganges exerted little influence on the changing Cenozoic seawater δ7Li, because riverine δ7Li attained a near steady-state composition.
He, T., Zhou, Y., Vermeesch, P., Rittner, M., Miao, L., Zhu, M., Carter, A., Pogge von Strandmann, P.A.E., Shields, G.A., 2016, Measuring the ‘Great Unconformity’ on the North China Craton using new detrital zircon age data, Geological Society of London Special Publication 448.
Pogge von Strandmann, P.A.E., Burton, K.W., Opfergelt, S., Eiriksdottir, E.S., Murphy, M.J., Einarsson, A., Gislason, S.R., 2016, The effect of hydrothermal spring weathering processes and primary productivity on lithium isotopes: Lake Myvatn, Iceland, Chemical Geology, 445: 4–13.
Lithium isotopes are rapidly becoming one of the most useful tracers of silicate weathering processes, but little is known on their behaviour in groundwaters and hydrothermal springs, and how these sources might influence the weathering signal in surface waters. This study presents lithium isotope compositions (δ7Li) for cold groundwaters (3–7 °C) and hydrothermal springs that were at geothermal temperatures (200–300 °C) but have cooled during transport (17–44 °C). Both represent an important source of water and nutrients for Lake Myvatn, Iceland. We also present a time-series from the Laxa River, which is the single outflow from the lake. The δ7Li values in the input springs to Lake Myvatn are highly variable (5–27‰), and correlate inversely with temperature and total dissolved solids. These co-variations imply that even in such waters, the processes controlling δ7Li variations during weathering still operate: that is, the ratio of primary rock dissolution to secondary mineral formation, where the latter preferentially incorporates 6Li with a temperature-dependent fractionation factor. In high-temperature geothermal waters (> 300 °C) secondary mineral formation is inhibited, and has a low fractionation factor, leading to little δ7Li fractionation. Even in waters that have cooled considerably over several months from their geothermal temperatures, fractionation is still low, and δ7Li values are similar to those reported from waters measured at > 350 °C. In contrast, cooler groundwaters promote relatively high proportions of clay formation, which scavenge dissolved solids (including 6Li). The time series on the Laxa River, the single outflow from Lake Myvatn, shows little δ7Li variation with time over the 12 month sampling period (17–21‰), demonstrating that in contrast to tracers such as Si isotopes, Li isotopes are unaffected by the significant seasonal phytoplankton blooms that occur in the lake. Thus, these results clearly illustrate that Li isotopes are ideally suited to constrain silicate weathering processes, because fractionation by secondary mineral formation operates even when groundwater and hydrothermal inputs are significant, and because Li isotopes are demonstrably unaffected by phytoplankton or plant growth.
Pogge von Strandmann, P.A.E., Stüeken, E.E., Elliott, T., Poulton, S.W., Dehler, C.M., Canfield, D.E., Catling, D.C., 2015, Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere, Nature Communications, 6.
Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball’ glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution.
Teng, F.Z., Yin, Q.Z., Ullmann, C.V., Chakrabarti, R., Pogge von Strandmann, P.A.E., Yang, W., Li, W.Y., Ke, S., Sedaghatpour, F., Wimpenny, J., Wiechert, U., Jacobsen, S.B., 2015, Inter-laboratory comparison of magnesium isotopic compositions of twelve igneous rock standards analysed by MC-ICPMS, G-cubed, 16(9), 3197–3209.
To evaluate the interlaboratory mass bias for high-precision stable Mg isotopic analysis of natural materials, a suite of silicate standards ranging in composition from felsic to ultramafic were analyzed in five laboratories by using three types of multicollector inductively coupled plasma mass spectrometer (MC-ICPMS). Magnesium isotopic compositions from all labs are in agreement for most rocks within quoted uncertainties but are significantly (up to 0.3‰ in 26Mg/24Mg, >4 times of uncertainties) different for some mafic samples. The interlaboratory mass bias does not correlate with matrix element/Mg ratios, and the mechanism for producing it is uncertain but very likely arises from column chemistry. Our results suggest that standards with different matrices are needed to calibrate the efficiency of column chemistry and caution should be taken when dealing with samples with complicated matrices. Well-calibrated standards with matrix elements matching samples should be used to reduce the interlaboratory mass bias. Key Points: First interlaboratory comparison of Mg isotopic data of geostandards Analysis of standards with composition ranging from ultramafic to felsic © 2015. American Geophysical Union. All Rights Reserved
Renforth, P., Pogge von Strandmann, P.A.E., Henderson, G.M., 2015, The dissolution of olivine added to soil: Implications for enhanced weathering, Applied Geochemistry, 61: 109–118.
Chemical weathering of silicate minerals consumes atmospheric CO2 and is a fundamental component of geochemical cycles and of the climate system on long timescales. Artificial acceleration of such weathering (“enhanced weathering”) has recently been proposed as a method of mitigating anthropogenic climate change, by adding fine-grained silicate materials to continental surfaces. The efficacy of such intervention in the carbon cycle strongly depends on the mineral dissolution rates that occur, but these rates remain uncertain. Dissolution rates determined from catchment scale investigations are generally several orders of magnitude slower than those predicted from kinetic information derived from laboratory studies. Here we present results from laboratory flow-through dissolution experiments which seek to bridge this observational discrepancy by using columns of soil returned to the laboratory from a field site. We constrain the dissolution rate of olivine added to the top of one of these columns, while maintaining much of the complexity inherent in the soil environment. Continual addition of water to the top of the soil columns, and analysis of elemental composition of waters exiting at the base was conducted for a period of five months, and the solid and leachable composition of the soils was also assessed before and after the experiments. Chemical results indicate clear release of Mg2+ from the dissolution of olivine and, by comparison with a control case, allow the rate of olivine dissolution to be estimated between 10−16.4 and 10−15.5 moles(Mg) cm−2 s−1. Measurements also allow secondary mineral formation in the soil to be assessed, and suggest that no significant secondary uptake of Mg2+ has occurred. The olivine dissolution rates are intermediate between those of pure laboratory and field studies and provide a useful constraint on weathering processes in natural environments, such as during soil profile deepening or the addition of mineral dust or volcanic ash to soils surfaces. The dissolution rates also provide critical information for the assessment of enhanced weathering including the expected surface-area and energy requirements.
Lechler, M., Pogge von Strandmann, P.A.E., Jenkyns, H.C., Prosser, G., Parente, M., 2015, Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event), Earth and Planetary Science Letters, 432, 210–222.
An abrupt rise in temperature, forced by a massive input of CO2 into the atmosphere, is commonly invoked as the main trigger for Oceanic Anoxic Events (OAEs). Global warming initiated a cascade of palaeoenvironmental perturbations starting with increased continental weathering and an accelerated hydrological cycle that delivered higher loads of nutrients to coastal areas, stimulating biological productivity. The end-result was widespread anoxia and deposition of black shales: the hallmarks of OAEs. In order to assess the role of weathering as both an OAE initiator and terminator (via CO2 sequestration) during the Early Aptian OAE 1a (Selli Event, ~120 Ma) the isotopic ratio of lithium isotopes was analysed in three sections of shallow- marine carbonates from the Pacific and Tethyan realm and one basinal pelagic section from the Tethyan domain. Because the isotopic composition of lithium in seawater is largely controlled by continental silicate weathering and high- and low- temperature alteration of basaltic material, a shift to lighter 7Li values is expected to characterize OAEs. The studied sections illustrate this phenomenon: 7Li values decrease to a minimum coincident with the negative carbon-isotope excursion that effectively records the onset of OAE 1a. A second negative 7Li excursion occurs coeval with the minimum in strontium isotopes after the event. The striking similarity to the strontium-isotope record argues for a common driver. The formation and destruction (weathering) of an oceanic LIP could account for the parallel trend in both isotope systems. The double-spike in lithium isotopes is probably related to a change in weathering congruencies. Such a chemostratigraphy is consistent with the hypothesis that an increase in silicate weathering, in conjunction with organic-carbon burial, led to drawdown of atmospheric CO2 during the early Aptian OAE 1a.
Lai, Y.J., Pogge von Strandmann, P.A.E., Dohmen R., Takazawa, E., Elliott, T., 2015, The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif, Geochimica et Cosmochimica Acta, 164: 318–332.
We have analysed the Li and Mg isotope ratios of a suite of samples from the Horoman Peridotite Massif. Our results show that most Li and all Mg isotopic compositions of the Horoman peridotites are constant over 100metres of continuous outcrop, yielding values for pristine mantle of δ7Li=3.8±1.4‰ (2SD, n=9), δ25Mg=-0.12±0.02‰ and δ26Mg=-0.23±0.04‰ (2SD, n=17), in keeping with values for undisturbed mantle xenoliths. However, there are also some anomalously low δ7Li values (-0.2‰ to 1.6‰), which coincide with locations that show enrichment of incompatible elements, indicative of the prior passage of small degree melts. We suggest Li diffused from infiltrating melts with high [Li] into the low [Li] minerals and kinetically fractionated 7Li/6Li as a result. Continued diffusion after the melt flow had ceased would have resulted in the disappearance of this isotopically light signature in less than 15Ma. In order to preserve this feature, the melt infiltration must have been a late stage event and the massif must have subsequently cooled over a maximum of ~0.3Ma from peak temperature (950°C, assuming the melts were hydrous) to Li closure temperature (700°C), likely during emplacement. The constant δ26Mg values of Horoman peridotites suggest that chemical potential gradients caused by melt infiltration were insufficient to drive associated δ26Mg fractionation greater than our external precision of 0.03‰.
Pogge von Strandmann, P.A.E., Dohmen, R., Marschall, H.R., Schumacher, J.C., Elliott, T., 2015, Extreme Magnesium Isotope Fractionation at Outcrop Scale Records the Mechanism and Rate at which Reaction Fronts Advance, Journal of Petrology, 56: 33–58.
Isotopic fractionation of cationic species during diffusive transport provides a novel means of constraining the style and timing of metamorphic transformations. Here we document a major (~1%) decrease in the Mg isotopic composition of the reaction front of an exhumed contact between rocks of subducted crust and serpentinite in the Syros mé lange zone. This isotopic perturbation extends over a notable length scale (~1 m), implicating diffusion of Mg through an intergranular fluid network over a period of ~100 kyr. These novel observations confirm models of diffusion-controlled growth of reaction zones formed between rocks of contrasting compositions, such as found at the slab-mantle interface in subduction zones. The results also demonstrate that diffusive processes can result in exotic stable isotope compositions of major elements with implications for mantle xenoliths and complex intrusions.